Multiprocessing으로 Pandas Apply 속도 향상 하기
최근 회사에서 plsql로 수 천 줄이 넘는 query를 python으로 바꾸었다. 최초에는 기존 병렬 처리를 그대로 바꾸기 위해, pyspark로 바꾸는 방법을 선택했지만, 생각보다 속도가 매우 느리고, Python UDF 사용 시, 데이터 정합성이 틀어지는 문제등이 발생하였다. (아마 비동기 처리 때문일 것으로 예상된다.) 결국, 여러 가지 시도 후, 이 프로젝트에서는 pandas가 더 유용할 것이라고 판단되었고, 속도를 끌어올리기 위해 여러 방법을 사용해 보다가 발견한 방법을 소개한다. Pandas Apply의 문제 Pandas는 C를 이용한 연산을 하는 numpy 기반으로 되어 있기 때문에, 어느 정도의 벡터화는 가능하지만, 무거운 연산등을 apply로 수행할 때, 속도적 한계를 가진다. 이는 P..
2023. 11. 13.