본문 바로가기

clustering3

Hierarchical Clustering(계층적 군집화) Hierarchical Clustering Hierarchical Clustering은 사실, 데이터 분석 및 알고리즘에서 많이 사용해보지 않은 알고리즘이다. Hierarchical Clustering의 원리와 특징등을 조금 더 공부해보고 싶었다. Hierarchical Clustering 이란? Hierarchical Clustering (계층적 군집화)는 데이터 포인트들을 거리나 유사도 기반으로 계층적으로 묶어나가는 군집화의 방법이다. Hierarchical Clustering의 결과는 보통 Dendrogram 형태로 표현하여 쉽게 확인 가능하다. Hierarchical Clustering은 계층의 구조를 시각적으로 파악 가능하여, 크지 않은 데이터셋들의 구조 분석이나 증빙, 이상치를 정의하는 일등에.. 2023. 3. 18.
K-means Clustering K-means Clustering K-means Clustering은 비지도 학습 기반의 Clustering 기법으로, 데이터를 Clustering하는 문제가 있으면, 가장 쉽게 연상되는 알고리즘이다. 워낙 많이 사용되어, 많이들 알고 있겠지만, K-means Clustering의 특징과 단계를 조금 더 자세히 알아보기로 한다. K-means Clustering 이란? K-means Clustering은 데이터를 K개의 군집으로 나누기 위한, 거리 기반 Clustering 알고리즘이다. K-means Clustering은 같은 집단 내 데이터들은 비슷한 특징을 가지고 있고, 다른 집단의 데이터와는 데이터적으로 상반된 특징을 가지고 있다는 것을 가정한다. 즉, 동일 집단의 군집화를 고려하는 것 뿐만 아니라.. 2023. 3. 13.
GMM(가우시안 혼합 모델) Clustering GMM (Gaussian Mixture Model) Clustering GMM Clustering은 Clustering 문제에서 각 Cluster에 포함될 확률이 포함될 때, 자주 사용하는 알고리즘이다. 대략적인 컨셉만 알고 쓰고 있지만, 조금 더 자세히 알아보고 싶었다. GMM 이란? GMM(Gaussian Mixture Model) Clustering은 어떠한 데이터 분포가 여러 개의 Gaussian 분포 여러 개가 섞여서 만들어졌다고 생각하고, 해당 데이터 분포를 이루는 여러 개의 Gaussian 분포로 나타내는 확률적 생성 모델이다. GMM Clustering은 다른 Clustering 모델과 달리, 해당 Cluster에 속할 확률을 같이 나타내주기 때문에, Clustering 결과에 불확실성도 .. 2023. 3. 10.